2,996 research outputs found

    Cosmological Origin of the Stellar Velocity Dispersions in Massive Early-Type Galaxies

    Full text link
    We show that the observed upper bound on the line-of-sight velocity dispersion of the stars in an early-type galaxy, sigma<400km/s, may have a simple dynamical origin within the LCDM cosmological model, under two main hypotheses. The first is that most of the stars now in the luminous parts of a giant elliptical formed at redshift z>6. Subsequently, the stars behaved dynamically just as an additional component of the dark matter. The second hypothesis is that the mass distribution characteristic of a newly formed dark matter halo forgets such details of the initial conditions as the stellar "collisionless matter" that was added to the dense parts of earlier generations of halos. We also assume that the stellar velocity dispersion does not evolve much at z<6, because a massive host halo grows mainly by the addition of material at large radii well away from the stellar core of the galaxy. These assumptions lead to a predicted number density of ellipticals as a function of stellar velocity dispersion that is in promising agreement with the Sloan Digital Sky Survey data.Comment: ApJ, in press (2003); matches published versio

    Measuring the 3D Clustering of Undetected Galaxies Through Cross Correlation of their Cumulative Flux Fluctuations from Multiple Spectral Lines

    Full text link
    We discuss a method for detecting the emission from high redshift galaxies by cross correlating flux fluctuations from multiple spectral lines. If one can fit and subtract away the continuum emission with a smooth function of frequency, the remaining signal contains fluctuations of flux with frequency and angle from line emitting galaxies. Over a particular small range of observed frequencies, these fluctuations will originate from sources corresponding to a series of different redshifts, one for each emission line. It is possible to statistically isolate the fluctuations at a particular redshift by cross correlating emission originating from the same redshift, but in different emission lines. This technique will allow detection of clustering fluctuations from the faintest galaxies which individually cannot be detected, but which contribute substantially to the total signal due to their large numbers. We describe these fluctuations quantitatively through the line cross power spectrum. As an example of a particular application of this technique, we calculate the signal-to-noise ratio for a measurement of the cross power spectrum of the OI(63 micron) and OIII(52 micron) fine structure lines with the proposed Space Infrared Telescope for Cosmology and Astrophysics. We find that the cross power spectrum can be measured beyond a redshift of z=8. Such observations could constrain the evolution of the metallicity, bias, and duty cycle of faint galaxies at high redshifts and may also be sensitive to the reionization history through its effect on the minimum mass of galaxies. As another example, we consider the cross power spectrum of CO line emission measured with a large ground based telescope like CCAT and 21-cm radiation originating from hydrogen in galaxies after reionization with an interferometer similar in scale to MWA, but optimized for post-reionization redshifts.Comment: 21 pages, 6 figures; Replaced with version accepted by JCAP; Added an example of cross correlating CO line emission and 21cm line emission from galaxies after reionizatio

    A new, simple electrostatic-acoustic hybrid levitator

    Get PDF
    Battelle has developed a hybrid levitator by combining the known single-axis acoustic standing wave levitator with a coaxial DC electric field. The resulting Coulomb forces on the charged liquid or solid sample support its weight and, together with the acoustic force, center the sample. Liquid samples with volumes approximately less than 100 micro-liters are deployed from a syringe reservoir into the acoustic pressure node. The sample is charged using a miniature high voltage power supply (approximately less than 20 kV) connected to the syringe needle. As the electric field, generated by a second miniature power supply, is increased, the acoustic intensity is reduced. The combination of both fields allows stable levitation of samples larger than either single technique could position on the ground. Decreasing the acoustic intensity reduces acoustic convection and sample deformation. Neither the electrostatic nor the acoustic field requires sample position sensing or active control. The levitator, now used for static and dynamic fluid physics investigations on the ground, can be easily modified for space operations

    Measuring the Small-Scale Power Spectrum of Cosmic Density Fluctuations Through 21 cm Tomography Prior to the Epoch of Structure Formation

    Full text link
    The thermal evolution of the cosmic gas decoupled from that of the cosmic microwave background (CMB) at a redshift z~200. Afterwards and before the first stars had formed, the cosmic neutral hydrogen absorbed the CMB flux at its resonant 21cm spin-flip transition. We calculate the evolution of the spin temperature for this transition and the resulting anisotropies that are imprinted on the CMB sky due to linear density fluctuations during this epoch. These anisotropies at an observed wavelength of 10.56[(1+z)/50] meters, contain an amount of information that is orders of magnitude larger than any other cosmological probe. Their detection, although challenging, could tightly constrain any possible running of the spectral index from inflation (as suggested by WMAP), small deviations from Gaussianity, or any significant contribution from neutrinos or warm dark matter to the cosmic mass budget.Comment: 4 pages, 3 figures, accepted for publication in Physical Review Letter

    The Expected Rate of Gamma-Ray Burst Afterglows In Supernova Searches

    Get PDF
    We predict the rate at which Gamma-Ray Burst (GRB) afterglows should be detected in supernova searches as a function of limiting flux. Although GRB afterglows are rarer than supernovae, they are detectable at greater distances because of their higher intrinsic luminosity. Assuming that GRBs trace the cosmic star formation history and that every GRB gives rise to a bright afterglow, we find that the average detection rate of supernovae and afterglows should be comparable at limiting magnitudes brighter than K=18. The actual rate of afterglows is expected to be somewhat lower since only a fraction of all gamma-ray selected GRBs were observed to have associated afterglows. However, the rate could also be higher if the initial gamma-ray emission from GRB sources is more beamed than their late afterglow emission. Hence, current and future supernova searches can place strong constraints on the afterglow appearance fraction and the initial beaming angle of GRB sources.Comment: 13 pages, submitted to ApJ

    Constraining Cosmological Parameters Based on Relative Galaxy Ages

    Get PDF
    We propose to use relative galaxy ages as a means of constraining cosmological parameters. By measuring the age difference between two ensembles of old galaxies at somewhat different redshifts, one could determine the derivative of redshift with respect to cosmic time, dz/dt. At high redshifts, z=1-2, this measurement would constrain the equation-of-state of the dark energy, while at low redshifts, z< 0.2, it would determine the Hubble constant, H_0. The selected galaxies need to be passively-evolving on a time much longer than their age difference.Comment: ApJ, submitted (6/7/01). 12 pages, 4 figure

    Development of a Muscle Spindle Model

    Get PDF
    Abstrac

    Gravitational Lensing of the X-Ray Background by Clusters of Galaxies

    Get PDF
    Gravitational lensing by clusters of galaxies affects the cosmic X-ray background (XRB) by altering the observed density and flux distribution of background X-ray sources. At faint detection flux thresholds, the resolved X-ray sources appear brighter and diluted, while the unresolved component of the XRB appears dimmer and more anisotropic, due to lensing. The diffuse X-ray intensity in the outer halos of clusters might be lower than the sky-averaged XRB, after the subtraction of resolved sources. Detection of the lensing signal with a wide-field X-ray telescope could probe the mass distribution of a cluster out to its virialization boundary. In particular, we show that the lensing signature imprinted on the resolved component of the XRB by the cluster A1689, should be difficult but possible to detect out to 8' at the 2-4 sigma level, after 10^6 seconds of observation with the forthcoming AXAF satellite. The lensing signal is fairly insensitive to the lens redshift in the range 0.1<z<0.6. The amplitude of the lensing signal is however sensitive to the faint end slope of the number-flux relation for unresolved X-ray sources, and can thus help constrain models of the XRB. A search for X-ray arcs or arclets could identify the fraction of all faint sources which originate from extended emission of distant galaxies. The probability for a 3 sigma detection of an arclet which is stretched by a factor of about 3 after a 10^6 seconds observation of A1689 with AXAF, is roughly comparable to the fraction of all background X-ray sources that have an intrinsic size of order 1''.Comment: 41 LaTeX pages, 11 postscript figures, 1 table, in AASTeX v4.0 format. To appear in ApJ, April 1, 1997, Vol. 47

    Giant slip lengths of a simple fluid at vibrating solid interfaces

    Full text link
    It has been shown recently [PRL 102, 254503 (2009)] that in the plane-plane configuration a mechanical resonator vibrating close to a rigid wall in a simple fluid can be overdamped to a frozen regime. Here, by solving analytically the Navier Stokes equations with partial slip boundary conditions at the solid fluid interface, we develop a theoretical approach justifying and extending these earlier findings. We show in particular that in the perfect slip regime the above mentioned results are, in the plane-plane configuration, very general and robust with respect to lever geometry considerations. We compare the results with those obtained previously for the sphere moving perpendicularly and close to a plane in a simple fluid and discuss in more details the differences concerning the dependence of the friction forces with the gap distance separating the moving object (i.e., plane or sphere) from the fixed plane. Finally, we show that the submicron fluidic effect reported in the reference above, and discussed further in the present work, can have dramatic implications in the design of nano-electromechanical systems (NEMS).Comment: submitted to PRE (see also PRL 102, 254503 (2009)
    • …
    corecore